1 A.30 San Joaquin Spearscale (Atriplex joaquiniana)

2 A.30.1 Legal Status

- 3 San Joaquin spearscale (*Atriplex joaquiniana*) is not listed under either federal or California
- 4 Endangered Species Acts. Its Heritage Ranking in the California Natural Diversity Database is
- 5 G2/S2.1 which means that globally (G) and within the state (S) there are either between six to 20
- 6 viable element occurrences of this species, 1,000 to 3,000 individuals of this species, or 2,000 to
- 7 10,000 acres where this species occurs. Its state threat level rank is "very threatened."
- 8 The California Native Plant Society (CNPS) List ranking of 1B.2 indicates that it is rare,
- 9 threatened, or endangered in California and elsewhere, and is considered by CNPS to be fairly
- endangered in California with between 20 to 80 percent of occurrences threatened. Plants with a
- 11 List rank of 1B are considered by the California Native Plant Society to meet the definitions of
- 12 Section 1901, Chapter 10 (Native Plant Protection Act) or Sections 2062 and 2067 (California
- 13 Endangered Species Act) of the California Fish and Game Code.

14 A.30.2 Species Distribution and Status

15 Range and Status

- 16 The range of San Joaquin spearscale includes Glenn, Colusa and Yolo counties to the north,
- 17 Contra Costa, Santa Clara, San Benito, Napa, Solano, and Alameda counties to the west,
- Sacramento, Fresno, Merced, and San Joaquin counties to the south (Figure A.30.1). Population
- trends of San Joaquin spearscale have not been documented. According to the CNPS (2008).
- 20 occurrences of San Joaquin spearscale in California are limited and at risk throughout its range,
- 21 although it may have been more abundant historically.
- 22 Endemic to California, San Joaquin spearscale historically has been collected in the Central
- 23 Valley from Glenn County south to Merced County (Silveira 2000, CNDDB 2008). Specimens
- 24 have also been collected in the inner North Coast Ranges in Glenn County and in the ranges of
- 25 Alameda, Contra Costa and San Benito counties (Silveira 2000, CNDDB 2008). It has been
- collected in, or adjacent to, salt marshes in Napa, Sacramento, San Luis Obispo, and Solano
- counties and on the shore of a small lake in Solano County (CNDDB 2008). Populations remain
- 28 extant at many of the collection sites. Of 94 observations of the distribution of San Joaquin
- 29 spearscale in California, seven occurred in Yolo County (CalFlora 2000, CNDDB 2008). In
- 30 Yolo County, San Joaquin spearscale has been collected on, and adjacent to, alkaline soils north
- of Davis, east of the City of Woodland, the McClellan AFB Davis Communications Facility site,
- 32 the DFG Tule Ranch Preserve, which is within the BDCP Planning Area, and near Dunnigan
- 33 (Showers 1996, EDAW 2004, Environmental Science Associates, Yolo County Planning &
- Public Works Department 2005, Dean 2007, CNDDB 2008).

35 Distribution and Status in the Planning Area

- Within the BDCP Planning Area, San Joaquin spearscale has been observed near Hass Slough,
- Orwood Tract, Byron Tract, Clifton Court Forebay, and northwest of Collinsville (CNDDB
- 38 2008) (Figure A.30.2).

Figure A.30.1. San Joaquin Spearscale Statewide Recorded Occurrences

DRAFT

Figure A.30.2. San Joaquin Spearscale Habitat Model and Recorded Occurrences

1 A.30.3 Habitat Requirements and Special Considerations

- 2 San Joaquin spearscale occurs in chenopod scrub and in meadows, playas, valley grassland, and
- 3 foothill grassland vegetation growing on alkaline soils. In the Central Valley of California, it
- 4 appears to be restricted to alkaline soils along the rims of alkaline basins and the edges of clay
- 5 bottom vernal pools (CNDDB 2008). It is also found in alkaline and saline soils near creeks and
- 6 seeps of the eastern flank of the inner North Coast Ranges (Taylor and Wilken 1993, CNDDB
- 7 2008). Suitable saline or alkaline soils occur near springs and seeps in the Blue Ridge and the
- 8 Capay Hills (Schaal et al. 1994) and may support populations of San Joaquin spearscale. Similar
- 9 soils occur in the alluvial fans of Brushy, Kellogg, and Marsh creeks along the northeastern edge
- of the San Joaquin Valley. In many instances, the species occurs with, or is found near,
- populations of brittlescale (*Atriplex depressa*) and palmate-bracted bird's-beak (*Cordylanthus*
- 12 *palmatus*) (CNDDB 2008).

13 A.30.4 Life History

- San Joaquin spearscale was first described in 1904 by A. Nelson (Nelson 1904). It is a 10 to 100
- cm tall herbaceous annual plant in the goosefoot family (Chenopodiaceae) (Taylor and Wilken
- 16 1993). The species is also known as San Joaquin saltbush and San Joaquin orache (Taylor and
- Wilken 1993, CalFlora 2000). It has erect stems, with many branches, which spread out as the
- plant ascends. The twigs are dense and finely scaled, becoming glabrous (hairless and smooth).
- 19 The ovate to triangular-shaped leaves measure 10 to 70 mm (Taylor and Wilken 1993). The
- leaves are finely gray-scaled and may be green above. They are also generally irregularly wavy-
- 21 toothed, with the base truncated and tapered in form (Taylor and Wilken 1993). The staminate
- 22 inflorescence is spike- or panicle-like, which refers to branched clusters of flowers in which the
- branches are racemes. They are congested on the ends of the main stem and branches,
- 24 resembling little "sausages." Species of Atriplex are most easily identified after flowering, based
- on fruiting bracts enclosing the seed (Hickman 1993). San Joaquin spearscale blooms from
- 26 April through October, depending upon environmental conditions (CNPS 2008). The seeds are
- 27 approximately one to 1.5 mm in length and are dark brown (Taylor and Wilken 1993). Very
- 28 little is known about the biology and germination patterns of the species; however, spearscale is
- known to produce a long-lived seed bank that germinates in response to soil disturbances and can
- persist in weedy grasslands dominated by exotic species (EDAW 2004).

31 A.30.5 Threats and Stressors

- 32 Development, intensive agriculture, waterfowl management, and exotic plant species are
- considered to be the primary threats to the species (Showers 1996, EDAW 2004, CNDDB 2008).
- 34 All of these impacts lead to loss of habitat and degradation of the specific soils the plant requires
- 35 to survive. Research should be directed towards invasive species control methods and
- techniques for establishing the appropriate hydrological regime to maintain the saline and
- 37 alkaline soils.

38

A.30.6 Relevant Conservation Efforts

- 39 San Joaquin spearscale is a proposed covered species under the East Contra Costa Habitat
- 40 Conservation Plan (HCP)/Natural Community Conservation Plan (NCCP) which includes
- 41 measures to protect populations and habitat. San Joaquin spearscale is proposed for coverage
- 42 under the Solano County HCP and the Yolo County HCP/NCCP.

1 A.30.7 Species Habitat Suitability Model

- 2 Habitat. San Joaquin Spearscale habitat was identified as Natural Seasonal Wetlands and
- 3 Grasslands on Antioch (AoA), Capay (Ca, Cc), Clear Lake (Ck), Diablo (DaC), Hillgate (HcA),
- 4 Marcuse (Mb, Mc, Sb), Marvin (Mf), Pescadero (Pc, Pk), Rincon (Rg), Scribner (245), and
- 5 Solano (Sh, Sk) soils (Figure A.30.2). Vegetation types designated as species habitat in this
- 6 model correspond to the mapped vegetation associations in the BDCP GIS vegetation data layer.
- 7 Aerial imagery (USDA 2005) and LiDAR elevation data (DWR 2007) were used to determine
- 8 how intensively parcels included in the model had been farmed as the vegetation data included
- 9 significant areas of fallow agricultural land that had been misclassified by DFG as various
- 10 classes of natural vegetation. Parcels without natural vernal pool and swale vegetation signatures
- and microtopography were deleted from the area of predicted habitat. Additionally, parcels with
- 12 known occurrences were digitized and included as habitat.
- 13 **Assumptions**. Historical and current records of this species in the BDCP Planning Area indicate
- that its current distribution is limited to alkaline soil areas with vernal pool and swale
- microtopography along the eastern border of the BDCP Planning Area (Figure A.30.2) (CNDDB
- 16 2008). The vegetation cover of the alkaline soils is typically a combination of vernal pool
- adapted species, alkaline soil adapted species, and annual ryegrass (CNDDB 2008).

18 A.30.8 Recovery Goals

- 19 A recovery plan has not been prepared for this species and no recovery goals have been
- 20 established.

21 Literature Cited

- 22 CalFlora. 2000. The CalFlora Database (a non-profit organization). Accessed on January 19,
- 23 2005. Available at: http://www.calflora.org/.
- 24 CNDDB (California Natural Diversity Data Base RareFind). 2008. California Department of
- 25 Fish and Game, Sacramento, CA. Ver. 3.1.0 with data generated on June 29, 2008.
- 26 CNPS (California Native Plant Society). 2008. Inventory of Rare and Endangered Plants (online
- edition, v7-08c-interim). California Native Plant Society. Sacramento, CA. Accessed on
- Sep. 17, 2008 from http://www.cnps.org/inventory.
- Dean, E. 2007. Report of results of UC Davis Center for Plant Diversity Herbarium search for
- 30 species occurrences. Davis, California.
- 31 DWR (California Department of Water Resources). 2007. Sacramento-San Joaquin Delta LiDAR
- 32 surveys.
- EDAW. 2004. San Joaquin saltbush mitigation plan Yolo County Juvenile Detention Facility.
- 34 Sacramento: Yolo County Central Services.
- 35 Environmental Science Associates, Yolo County Planning & Public Works Department. 2005.
- CALFED at-risk plant species, habitat restoration and recovery, and non-native species
- 37 management ERP-02-P46: final conservation and management plan. CALFED
- 38 Ecosystem Restoration Program, Sacramento.

- Hickman, J.C., ed. 1993. The Jepson Manual: Higher Plants of California. University of
 California Press, Berkeley, CA.
- 3 Nelson, A. 1904. Proceedings of the Biological Society of Washington .17(12):99.
- Schaal, R.B., R.E. Criss, and M.L. Davisson. 1994. Saltwater springs atop the Rumsey Hills, California. California Geology May/June. pp. 67-75.
- Showers, M.T. 1996. *Cordylanthus palmatus* habitat survey, mitigation potential, and management recommendations. Sacramento: PAR Environmental Services, Inc.
- 8 Silveira, J.G. 2000. Vernal pools and relict duneland at Arena Plains. Fremontia. 27: 38-47.
- 9 Taylor, D. and D.H. Wilken. 1993. *Atriplex*. In: J.C. Hickman, ed., The Jepson Manual: Higher Plants of California. Berkeley: University of California Press. pp. 501-505
- United States Department of Agriculture (USDA). 2005. National Agricultural Imaging
 Program.